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NOMENCLATURE 

4 boundary of region C; 
C, region of container; 
P, pressure perturbation; 
Ra, Rayleigh number Ra = gajh4/kv; where g, a, j, 

h, k, v are gravity constant, coefficient of thermal 
expansion, temperature gradient, characteristic 
length, thermal diffusivity, and kinematic 
viscosity, respectively; 

u, 0, w, Cartesian velocity components; 
x, y, z, Cartesian coordinates ; 
0, temperature perturbation; 
1, eigenvalue I = Ra*. 

INTRODUCTION 

THE FIRST analytical investigations of thermal instability 
appears to be that of Lord Rayleigh [Z], who was motivated 
by experiments made by Bernard [3,4]. A survey of the 
earlier development in this field was presented by Ostrach 
[5], and by Chandrasekhar [6]. 

The solution of thermal instability problems depends 
strongly on the boundary conditions and on the boundary 
shape. Thus, separation of variables, which was applied 
successfully to infinite horizontal layers, by Rayleigh [2], 
by Jeffreys [7], by Pellew and Southwell [S], and by 
Chandrasekhar [6], cannot solve the completely confined 
case. Because of the mathematics involved some other con- 
figurations, which still had one infinite dimension, were then 
considered: the vertical infinite layer, by Ostrach [ 111 and 
by Yih ~[12]; the vertical infinite cylinder, by Yih [12]; the 
infinite horizontal cylinder by Weinbaum [13]; and the 
infinite channel, by Davies-Jones [ 141. 

Entirely different methods were required to obtain the 
solutions for completely confined fluids: for the finite vertical 
circular cylinder @ha&on and Sani [lS], [16]) and for the 
rectangular box (Davis [17], modified by Catton [18]). 
These last methods either directly rely on some variational 
formulation of the problem or are indirectly shown to be 
equivalent to such an approach. 

u=o=w=6=0 on B (6) 

v, u, and w are the Cartesian components of the velocity 
vector, and 0 and P are the perturbations in the rest state 
temperature and pressure 

i = Raf (7) 

Ra = gafih4/kv the Rayleigh number (8) 

g, a, /I, h, k, and v are, respectively, the gravity accelerations, 
the coefficient of thermal expansion, the constant tem- 
perature gradient, the characteristic length, the thermal 
diffusivity, and the kinematic viscosity. The fluid is com- 
pletely confmed inside the region C (rhe container), with its 
rigid boundaries B. These boundaries have on them a point 
of maximum z and a point of minimum z (at least one 
point for each). The characteristic length h is defined 

h = (max 2)s - (min 2)s. (9) 
:13 

The stationary properties of the critical Rayleigh number, 
and some variational formulations of the problem were 
already used for the infinite fluid layer, by Rayleigh [2], by 
Pellew and Southwell [8], and by Chandrasekhar [6], who 
also suggested an alternative formulation. However, the 
validity of a variational principle for the completely con- 
fined fluid has only recently been established, by Sani 
[19,20,15]; also see [Zl]. Once shown to exist, the vari- 
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ational principle may have several formulations, each con-. 
venient for some particular investigation. These formulations 
can be applied in two ways: they can lead to exact solutions, 
by the Rayleigh-Ritz method [lS] or by the Galerkin 
method [17,18]; They can also be used to obtain bounds 
to the critical Rayleigh number as shown by Sherman and 
Ostrach [22] and modified in [23]. 

This investigation utilizes the variational principle of Sani 
[19,20, IS] in a modified form, together with some general 
properties of eliptic operators, to obtain both upper and 
lower bounds to the critical Rayleigh number for very 
general closed configurations. The method requires the 
knowledge of the detailed geometry, and is, therefore, less 
general than that of [23] for lower bounds; however, it 
yields better lower bounds (i.e. higher) than those obtained 
by [23], for many classes of configurations, and it also 
yields upper bounds. 

ANALYSIS 

(a) Basic equations 
A convenient form of the non-dimensional, linearized, 

basic equation is [ 1.5, 171: 

au au aw 
-+-+- = 0 

ax ay az 

V’u_g=O (2) 

wl+lw = 0 

with the boundary conditions 

(5) 
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Table 1. Upper and lower bounds to Ra for vertical cylinders of flat hexagonal cross-section (Fig. 1) 

0125 0.25 0.50 0.50 1QO 1.00 2.00 2.00 3.00 4GO 
025 050 0.50 1.00 0.50 2.00 2.00 3.00 4GO 4.00 
0125 @25 025 0.50 0.25 1.00 l%l 1.00 3.00 3Gcl 

6.00 
6.00 
5.00 

Lower bound 

Upper bound 

1554 480 115596 48 178 14615 14615 5138 3773 2153 2337 2270 1991 

9802960 638 754 115596 48 179 64271 6914 5138 5138 2558 2338 2008 

Table 2. Upper and lower bounds to Ra for a cone (Fig. 2) 

R 

Lower 
bound 

Upper 
bound 

Y 

1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 00 

2545 2009 1886 1810 1783 1749 1734 1726 1721 1718 1707 

40721 20 264 13014 9839 8044 6245 5218 4550 4117 3810 1708 

050 @61 067 0.72 075 0.82 0.99 1.03 1.07 1.09 

FIG. 1. Flat hexagonal cross-section. 

L-R-4 

FIG. 2. Cone with inscribed cylinder. 

The Boussinesq approximation [l] is assumed to hold, i.e. 
the properties of the fluid are assumed constant, including 
its density. 

A variational formulation equivalent to equations (2) to (5) 
is (e.g. Charlson and Sani [15]): 

i = max(, ~~Bwdu/[~[Vu)‘+(V# 

+ (VW)’ + (Ve)‘] du 
1 

(10) 

where u, u, w and 0 must also satisfy equations (1) and (6). 

(b) Upper and lower bounds theorem 
Given two containers, one of which can be completely en- 

closed inside the other, the critical Rayleigh number of the 
inside container is an upper bound to that of the outside 
container, and the critical Rayleigh number of the outside 
container is a lower bound to that of the inside one. 

This theorem, which expresses the fact that Rayieigh 
number is monotonic with respect to the domain, follows 

directly from a general property of elliptic eigenvalue prob- 
lems, as used by Sani [24], by Joseph [25], and considered 
by Garabedian [26]. 

(c) Natural boundary conditions 
The variational principle can be formally applied for cases 

whereeither6=Oorboth0=Oandu=v=w=Oarenot 
imposed on parts of the boundary. Standard variational 
techniques yield either de/&~ = 0 or both at?/& = 0 and 
&Jan = au/an = awlan = 0 as natural boundary conditions 
on the corresponding parts of the boundaries. The I values 
obtained for these cases would thus be lower bounds to the 
values obtained for identical configurations, for which 
equation (6) is satisfied everywhere (this point is already 
made by Charlson and Sani [ 151). 

In general these cases will not describe solutions to 
thermal instability problems. However, there are two par- 
ticular classes of problems for which those natural boundary 
conditions are physically meaningful: 

(1) The piecewise cylindrical insulating wall. Part of the 
wall of the container is generated by the horizontal 
motion of a vertical straight line, i.e. is defined by 
~;~;)==~.l,If this wall is insulating then de/an = 0 

(2) The cellular cell in an infinite layer. Because of 
symmetry on the cell’s boundaries S/an = au/an = 
au/an = &fan = 0. 

Upper bounds to the critical Rayleigh number for these two 
classes can still be obtained by the Upper Bound Theorem, 
in two stages: an upper bound is first obtained by changing 
all boundary conditions to those of equation (6); then an 
upper bound to the upper bound is obtained by the 
theorem. Similarly, a known solution for a configuration 
with some natural boundary conditions can serve as a lower 
bound for a container of identical configurations, but with 
conducting walls. 

It seems that no such genera1 rule can be set for lower 
bounds; hence each configuration with some natural bound- 
ary conditions on parts of its boundaries must be treated 
as a particular case. 

NUMERICAL EXAMPLES 

(a) Vertical cylinder with hexagonal cross-section 
Let the hexagon side be 1.155. 
Upper Bound is obtained by the circular cylinder inscribed 

inside the hexagonal cylinder, i.e. of radius 0.8660 x 1.155 = 
1.0. The results of Charlson and Sani [15] are used to 
obtain Ra i 2545. 
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Lower Bound could be obtained by the circular cylinder 
which circumscribes the hexagonal cylinder, i.e. of radius 
1.155. Interpolation from the results of Charlson and Sani 
[IS] yield Ra > 2284. Unfortunately, both [15] and [ 161 
give upper bounds to the values of Ra for the circular 
cylinder, which cannot be used to generate the lower bound. 
Therefore, another method must be used: the exact solution 
for the hexagonal cell in the infinite layer (i.e. de/an = 
au/an = &/an = &v/an = 0 on the cylindrical boundaries, 
all natural boundary conditions), interpolated from 
Chandrasekhar [6], is a lower bound: Ra > 1817. (The 
method of [23] yields Ra > 413.) 

(b) Ertical cylinder withflat hexagonal cross-section (Fig. 1) 
Let the rectangular dimensions of the hexagon be b, b. 

and bi . 
Upper Bound is obtained by the solution for the rec- 

tangular region of sides b and bi. 
Lower Bound corresponds to the solutions for the rec- 

tangular region of sides b and b,,. 
Using Catton’s [18] results, some numerical values are 

presented in Table 1. 

(C) The cone (Fig. 2) 
Consider the cone of radius 1. 
Lower bound is obtained by the solution for the hexagonal 

cylinder of side 2/,/3, hence Ra > 1785, Chandrasekhar [6] 
([23] yields a lower bound of 1570). 

Upper bound is obtained by inserting a circular cylinder 
inside the cone. It is noted that for such a cylinder the 
height and the radius are related (h+ r = 1 for this example). 
Furthermore, when the critical Rayleigh humber for such a 
cylinder is obtained in terms of h (its height), it must be 
multiplied by (l/h)“ to yield the number for the cone. Trying 
several possible cylinders, the following results were obtained 

For r = 0.333 and h = 0666, Ra < 59400 

For r = 0.5 and h=@5, Ra < 40721 

For r = 06 and h = 06, Ra c 78500 

This Ra < 40 72 1 is chosen as the best upper bound for this 
case. 

This process is repeated for cones of different radii, and 
the results are summarized in Table 2. 
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